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1. Phys. A. Math. Gen. 27 (1994) 45194526. Pnnted in lhe UK 

Jerk by group theoretical methods 

Joachim Nzotungicimpaye 
Ddpanment de Mathhatiques. Universitd du Burundi. BP 2700, Bujumbura. Burundi 

Received IO August 1993, in final form 22 March 1994 

Abstract. We study the second central extension of the one spatial dimensional Calilei group C.  
We find that the kinematic quantity p r K  is connected with the physics of one of the co-adjoint 
orbits of ule first central extension of G, as much as acceleration is associated with the physics 
of one of the co-adjoint orbits of G. 

1. Introduction 

Recently we introduced group theoretically the Galilei-Newton laws of motion with constant 
acceleration [I]. We have also studied the symplectic actions of the Galilei group on the 
dual Lie algebra of its first central extension. 

Also, Schot [2] and Luzader 131 introduced a physical quantity that they separately 
called jerk and that Sandin recently discussed as a kinematic quantity [4]: ‘The velocity 
of a particle is the first derivative with respect to time of its position, the acceleration is 
the second drivative, and the jerk is the third derivative’. Sandin established the kinematic 
equation for a system with constant jerk and discussed the Newton second law for that 
system. 

Let us also recall that all the generic Hamiltonian spaces for a Lie group are orbits of 
the co-adjoint representation of the group on his central extended dual Lie algebra, that the 
analogies of the projective unitary (ray) representations quantum mechanics are, in classical 
mechanics, the Hamiltonian actions, and that, finally, the ray representations of the 3-spatial 
Galilei group have previously been studied by Iniinii and Wigner [5] ,  Levy Leblond [6] and 
Voisin [7]. 

In this article we study the connected second central extension of the Galilei Lie group. 
We show that the equations found by Sandin can be introduced group theoretically in the 
same way as we have introduced Galilei-Newton laws in [I]. We also show that position 
can be seen as the time rate of change of some observable canonically conjugated with 
force. 

This article is organized as follows. In section 2, we review some notions on central 
extensions of Lie groups and Lie algebras. In section 3, for the sake of completeness, we 
remind the reader the essentials of the paper [I]. The connected second central extension 
of the Galilei group G is introduced in section 4, where we study the physics of one of the 
orbits of the first central extension of G. Mass and jerk appear as characteristics of that 
orbit. 

In the appendix, we show how the symplectic geometry is introduced on the co-adjoint 
orbits of the Lie group. 
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2. Central extensions of Lie groups and Lie algebras [8-10] 

Let G be a Lie group. A 2-cocycle c is a real function 

c : GxG R" 

such that 

c k ,  h )  + c k h ,  k) = c(g, hk) + c(h, k) 

c(e, e )  = 0 

(2.la) 

(2.lb) 

where e is the unit element of G. A 2-cocycle c is trivial if there exists a coboundary 
b : G + R" with b(e) = 0 and such that 

c k ,  h )  = Wgh) - b k )  - b(h). 

Two 2-cocyles c1 and c2 are said to be equivalent if there exists a trivial Zcocycle c3 such 
that c,  = cZtc3. The equivalence classes form the second cohomological group H2(G. R") 
whose dimension is n. 

Let G be a Lie group and let c be a 2-cocycle of G. One can then define a Lie group 
G, = {e, g) : 0 E R", g E G] with multiplication law: 

( e , g w , g ' )  = (e +e'+c(s,go,gg?. (2.3) 

Associativity is ensured by (2.la). The subgroup 0 = {(e. e) : 0 E R") is isomorphic 
to R" and is central invariant in G,. On the other hand, the quotient group G,/O is 
isomorphic to G and G, is said to be a central extension of G by 'R" via the 2-cocycle c. 
Two equivalent 2-cocycles give rise to isomorphic central extensions. Moreover a trivial 
2-cocycle gives rise to a trivial extension, a direct product of R" and G. 

Similarly, given a 2-cocycle c(I) of G,, we can define a central extension of G, which 
we denote by G:),. G, and G:?, are, respectively, called a first central extension and a 
second central extension of G. A nth central extension of G is similarly constructed and is 
denoted G2-,, . 

If B and Bc are, respectively, the Lie algebras of G and G,, let ( A ,  X) denote the 
general element of Bc, with X in B and A in the Lie algebra R" of 0. 

From (2.3) one then finds that 

[ (A,  X), ( B ,  = (Y(K Y ) ,  [X, Yl)  (2.4) 

where y : BxB + 72" is the infinitesimal of c and satisfies 

Y(X, Y )  = -y(Y,X) (2.5a) 

YNX, YI, Z) + Y(W, ZI. X) + YCZ, XI, Y )  = 0. (2.56) 

If (Xi), i = I ,  . . . , dim G, is a basis for B and if (Aa) ,  01 = 1, . . . , n, is a basis for R" 
then the nontrivial Lie brackets for Gc are 

[ X; , Xj] = Xk Cb + A,dE (2.6) 
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Ch being the constants of structure for 8. 

has also that 
The n-dimensional Abelian Lie algebra generated by the A,  is the centre of Q. One 

y ( X i ,  Xi) = A&, 

and one verifies, from ( 2 . 5 ~ )  and (2.56), that 

du. -& 
' I  I '  

ffP,c;, + d;c;, + d6Cli = 0. 

( 2 . 8 ~ )  

(2.8b) 

An infinitesimd y : ExG --+ '77," is trivial if there exist a real linear form f l  such that 

Y(X, Y) = N X ,  Yl). (2.9) 

Also two infinitesimals which differ by a trivial one are equivalent and give rise to 
isomorphic extensions. 

3. First central extension G(') of the Galilei group G and acceleration 

First of all, let us recall that the general element g of the one spatial dimensional Galilei 
group is parametrized as follows 

8 = (U, t ,  x )  (3.1) 

where x ,  t,  U are, respectively, space translation, time translation and Galilean boost from 
one inertial frame to another, their dimensions being respectively L (for length), T (for 
time) and LT-' . 

The multiplication law is 

(U', f ' ,  x')(u, t ,  x) = (U' + U, f' + t .  x' + U'? + x ) .  (3.2) 

From this we calculate that the Lie algebra B is generated by the left-invariant vector fields 
(which, as anyone knows, generate right translations) 

K = a, E = a, + va, P =a,. (3.3) 

We then see that the non-trivial Lie bracket is 

[K, E] = P. (3.4) 

Using standard methods [8-101 (looking for solutions of the system (2.8+(2.8b)), we 
can verify that the maximal central extension G(') of B is generated by K, E, P, M, F 
such that the non-hivial Lie brackets are 

[K, PI = M [K, E ]  = P [P, E] = F (3.4Q) 

the centre of being generated by M and F .  
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Now, writing the general element g(') of G'", the connected Lie group associated to 
8('),  as 

g ( l )  = etF+/MetE+xPevK 

and using the Baker-Campbell-Hausdofl (BCH) formulae, we find that the multiplication 
law for G(') is 

(U, t ,  X ,  6, <)(U', t ' ,  x ' ,  e', c') = (U + U', + f', x + X' + ut', t + (' + UX' 

( 3 . W  1 2 ,  + Tu I ,  5 + <' + i ( X  - ut)t' - +') 

where ( and t have respectively LZT-' and LT as dimensions. 
If we define the coboundary b : G + R by 

b(g) = ktx  

we then verify that the 2-cocycle cz : GxG -+ R defined by 

(3.5) 

t' t 
2 2 

cz(g, 8') = - (x  + ut') + - ( x ' - t  ut') (3.6) 

is trivial. 
From (3.2) we see that the 2-cocycle CI : GxG + R is defined by 

cr(g, g') = (ux' + $A', f t ' ( x  - Uf) - I t x ' )  (3.7) 

and is equivalent to c3 = c1 + cz where 

c3(g.g') = ( O , x t ' +  fLtt'2). (3.8) 

The multiplication law ( 3 . k )  for G(') is then equivalent to 

( U , f , X , ( , < ) ( U ' ,  t ' , x ' , ( ' ,  f) = ( U +  U ' , t  + t ' , x  + x ' +  U f ' , t  + E ' +  ux' 

+ $JZf', I' -I. ('+ C'X + $Jt'2). 

Starting from the definition of co-adjoint action Ad": 

(Ad;(p), Ad,(X)) = (P. X); X E 8,  p E 8". g E G 

(3.W 

and using the fact that the adjoint action of G(') on G C r )  is exactly that of G ,  we verify that 
the co-adjoint action of G on the central extension's dual Lie algebra @I)* is 

Ad&,,,)(k,e,p,m,f) = ( k + p t + m ( x - u r ) + ~ f t z , e - p u + ~ m v 2 -  fx, p-mu+ f t , m ,  f) 
(3.9) 

where we have defined the duality (, ) : @')*xg(') -+ R by 

( ( k ,  e, p ,  m, f), V u ,  6 t ,  6 x ,  6( ,  6 5 ) )  = k6u +eat + pax + m6t + f6T. (3.10) 
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The right-hand side must have the dimension of an action (mass x(length)* x (time)-’). 
For this reason m, f, p. e and k can be interpreted, respectively, as mass, force, momentum, 
energy and mass times length. 

If we make a change of variables 

with 

(3.11) k 1 P2 q = - (position) U = e - -- + fq (potential energy) 
m 2 m  

we then verify from (3.9) that the corresponding G-orbit on G(’)*, which we denote by 
O(f, m ,  U ) ,  is characterized by three invariants: f, m and U .  The orbit is parametrized 
by the Darboux’s coordinates (q ,  p)  such that the symplectic form on O ( f ,  m ,  U )  (see 
appendix) is 

o = dpA d q .  (3.12) 

Also we see from (3.9) that the G-symplectic action on the orbit (i.e. the restriction of the 
co-adjoint action of G on the orbit) is 

~ ( ~ , ~ , ~ ) ( q ,  P )  = (4 + (U - u) t  + x + i y t Z ,  P - mu + f t )  (3.13) 

where 

(3.14) 

which is the fundamental realization of the one spatial dimensional Galilei group on 

Now, let us study the physics of the orbit. For this we introduce the contact manifold 

f P 
m m 

y = -(acceleration) U = -(velocity) 

O ( f ,  m, W .  

R x O ( f .  m,  U )  endowed with the 2-form 

w ( t )  = o - d N h  dt (3.15) 

H ( q ,  p. t )  being the Hamiltonian function in the conventional sense. Let (q (O) ,  p(O), 0) 
denote the state of the system at t = 0. Then, by the evolution law 

(q( t ) ,  P ( 0 , t )  = L(O.t.0)(4(0), P(O), 0) 

we find that 

q ( t )  = q(0) + U t  + ivt’ p( t )  = P(0)  + f 
which are Galilei-Newton laws of motion, y being a conslant acceleration. 

(3.16) 
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4. Second central extension gcz) of the Galilei Lie algebra B and jerk 

From (3 .4~~) .  we verify that the " n I  second central exfemion g(*) of the Galilei Lie 
algebra is generated by K, E, P, M, F ,  R ,  B and S such that the nontrivial Lie brackets are 

[ K , E ] = P  [ K , P ] = M  [ K , M ] = R  [ K , F ] = B  

[ E ,  PJ = -F 
(4.1) 

[ E ,  MI = -E [ E ,  F ]  = -S 

the centre of G(') being generated by B, S and R. 
If the general element of is written as 

X = 6uK + 6 f E  + 8 < M  +8<F + 8 r R  +6bB+6sS 

and if we use the fact that 

Aderprx = exp(fadx) 

we then verify that the co-adjoint action of G(') on @)* is given by 

(k'. e', P I .  f I ,  P', B', 0') = Ad&,,,,t,l)(k e, P .  m .  f .  B ,  6) 
with 

tZ U 
k' = k + p f  + m x  + f 2 + P< +BS + a t 3  

( 4 . 4 4  
U 2  t 2  

p' = p - m u  + f t  + p- - B u r  + U -  
2 2 

m' = m + p t  - pu (4.44 

f ' =  f -/%+ut (4.44 

p ' = p  p ' = p  u ' = u  (4.4fl 

where the duality between G(2) and Gcz)* has been defined by 

( & , e ,  p , m , f ,  P , B , U . ) . ( ~ U , ~ ~ , ~ ~ , S F , S S , S ~ , ~ ~ , S ~ ) )  
= k6u + est + p8x + m6t + f 8{ + p6r + @ab + u8s. (4.5) 

From the two equations (4.46) and (4.4e), we see that p. ,3, U have, respectively, mass times 
(time)-', mass times (velocity)-', mass times length times (time)-3, and are invariant. 

Let us study the physics of the G")-co-adjoint orbit (see appendix) corresponding to 
p = B = 0. The orbit is characterized by the invariants j = u / m  and m.  We will denote 
it by O ( j ,  m ) .  We will see later in the text that j is a jerk. 

If we define 
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we then verify that the orbit is endowed with the symplectic Zform (in Darboux's 
coordinates) 

w = dq h d p  + d f Ad4 (4.7) 

and that the G%ymplectic action on the orbit is 

L ( , , , , , , ~ . , t ) ( q , @ , P , f ) =  q + u t + Z y t 2 + - J t 3 + X , 4 + ( q + X ) t +  6 Zt2+ ;Y t3  
1 1 .  U 1  

(4.8) 

Now let (q(O), @(O), p(O), f (0) ,  0 )  be the state of the elementary system at t = 0. Then 

1 1 .  

( 
1 .  

24 2 
+ - j t 4 - < , p - m u +  f t + - m j t 2 , f + m j t  . 

the evolution law 

W ) ,  m, P ( 0 .  f (0, t )  = ~(0,t,0,0,0,(~(0). 4(0). P(O), f (Oh 0) 

gives rise to 

q(t) = q(0) + u t  + iyt' + j t 3  

(4.9) 

which are the Galilei laws of motion for a nonconstant acceleration y hut with a constant 
jerk j .  

We verify that the Hamiltonian equations are 

The first three equations are exactly those of Sandin 141. The fourth one is new and 
suggests that the position can be seen as the time rate of change of the observable canonically 
conjugated with force. 

Appendix. Symplectic form on eo-adjoint orbits 

We know that the coadjoint Ad* : G*xG + R of G on G* is such that 

(Ad:(p), Y )  = ( P ,  [X .YI ) .  

If 

p = p,&a E 8* X = e,Xa Y = e,Ya E G 

then 

(Ad:(p), Y )  = f L d p ) X ' Y b  
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where 

(A.3) d K d P )  = P&,, 

is the Kirillov 2-form [6] on B*. 
The representation p : B + 7(r) of p on the space of vector fields on defined by 

is such that 

Ker K(p) = (f E P ( G * ,  77,) : p ( X ) f  = 0, X E GI. 

This means that Ker(K(p)) is exactly the set of all invariants of B in G*. The quotient space 
O ( p )  = I;*/Ker(K(p)), called the co-adjoint orbit of G in 8‘, is a symplectic manifold 
[I 1,121. The symplectic form oUb is obtained from 

f&bwbc = 6: (A.5) 

where @ab = Knb I O ( p ) ,  i.e. the restriction of the Kirillov form on the orbit. 
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